
7.1 | Electric Potential Energy

Learning Objectives

By the end of this section, you will be able to:

• Define the work done by an electric force

• Define electric potential energy

• Apply work and potential energy in systems with electric charges

When a free positive charge q is accelerated by an electric field, it is given kinetic energy (Figure 7.2). The process is
analogous to an object being accelerated by a gravitational field, as if the charge were going down an electrical hill where its
electric potential energy is converted into kinetic energy, although of course the sources of the forces are very different. Let
us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric
potential energy.

Figure 7.2 A charge accelerated by an electric field is
analogous to a mass going down a hill. In both cases, potential
energy decreases as kinetic energy increases, – ΔU = ΔK .

Work is done by a force, but since this force is conservative, we
can write W = – ΔU .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken, as
we will demonstrate later. This is exactly analogous to the gravitational force. When a force is conservative, it is possible to
define a potential energy associated with the force. It is usually easier to work with the potential energy (because it depends
only on position) than to calculate the work directly.

To show this explicitly, consider an electric charge +q fixed at the origin and move another charge +Q toward q in such

a manner that, at each instant, the applied force F→ exactly balances the electric force F→ e on Q (Figure 7.3). The

work done by the applied force F→ on the charge Q changes the potential energy of Q. We call this potential energy the

electrical potential energy of Q.

Figure 7.3 Displacement of “test” charge Q in the presence of
fixed “source” charge q.

286 Chapter 7 | Electric Potential

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



The work W12 done by the applied force F→ when the particle moves from P1 to P2 may be calculated by

W12 = ∫
P1

P2
F→ · d l→ .

Since the applied force F→ balances the electric force F→ e on Q, the two forces have equal magnitude and opposite

directions. Therefore, the applied force is

F→ = − Fe
→

= − kqQ
r2 r̂ ,

where we have defined positive to be pointing away from the origin and r is the distance from the origin. The directions of
both the displacement and the applied force in the system in Figure 7.3 are parallel, and thus the work done on the system
is positive.

We use the letter U to denote electric potential energy, which has units of joules (J). When a conservative force does negative
work, the system gains potential energy. When a conservative force does positive work, the system loses potential energy,
ΔU = −W. In the system in Figure 7.3, the Coulomb force acts in the opposite direction to the displacement; therefore,

the work is negative. However, we have increased the potential energy in the two-charge system.

Example 7.1

Kinetic Energy of a Charged Particle

A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin

(Figure 7.4). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ).

Figure 7.4 The charge Q is repelled by q, thus having work
done on it and gaining kinetic energy.

a. What is the work done by the electric field between r1 and r2 ?

b. How much kinetic energy does Q have at r2 ?

Strategy

Calculate the work with the usual definition. Since Q started from rest, this is the same as the kinetic energy.

Solution

Integrating force over distance, we obtain

W12 = ∫
r1

r2
F→ · d r→ = ⌠

⌡r1

r2
kqQ
r2 dr = ⎡

⎣−kqQ
r

⎤
⎦r1

r2
= kqQ⎡

⎣
−1
r2

+ 1
r1

⎤
⎦

= ⎛
⎝8.99 × 109 Nm2 /C2⎞

⎠
⎛
⎝5.0 × 10−9 C⎞

⎠
⎛
⎝3.0 × 10−9 C⎞

⎠
⎡
⎣

−1
0.15 m + 1

0.10 m
⎤
⎦

= 4.5 × 10−7 J.

This is also the value of the kinetic energy at r2.

Significance

Charge Q was initially at rest; the electric field of q did work on Q, so now Q has kinetic energy equal to the work
done by the electric field.

Chapter 7 | Electric Potential 287



7.1 Check Your Understanding If Q has a mass of 4.00 µg, what is the speed of Q at r2?

In this example, the work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a
negative ΔU . A value for U can be found at any point by taking one point as a reference and calculating the work needed

to move a charge to the other point.

Electric Potential Energy

Work W done to accelerate a positive charge from rest is positive and results from a loss in U, or a negative ΔU .

Mathematically,

(7.1)W = −ΔU.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by
a conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing
with the force directly. It is much more common, for example, to use the concept of electric potential energy than to deal
with the Coulomb force directly in real-world applications.

In polar coordinates with q at the origin and Q located at r, the displacement element vector is d l→ = r̂ dr and thus the

work becomes

W12 = −kqQ⌠
⌡r1

r2
1
r2 r̂ · r̂ dr = kqQ 1

r2
− kqQ 1

r1
.

Notice that this result only depends on the endpoints and is otherwise independent of the path taken. To explore this further,
compare path P1 to P2 with path P1 P3 P4 P2 in Figure 7.5.

Figure 7.5 Two paths for displacement P1 to P2. The work

on segments P1 P3 and P4 P2 are zero due to the electrical

force being perpendicular to the displacement along these paths.
Therefore, work on paths P1 P2 and P1 P3 P4 P2 are equal.

The segments P1 P3 and P4 P2 are arcs of circles centered at q. Since the force on Q points either toward or away from

q, no work is done by a force balancing the electric force, because it is perpendicular to the displacement along these arcs.
Therefore, the only work done is along segment P3 P4, which is identical to P1 P2.

One implication of this work calculation is that if we were to go around the path P1 P3 P4 P2 P1, the net work would be

zero (Figure 7.6). Recall that this is how we determine whether a force is conservative or not. Hence, because the electric

force is related to the electric field by F→ = q E→ , the electric field is itself conservative. That is,

∮ E→ · d l→ = 0.

Note that Q is a constant.
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Figure 7.6 A closed path in an electric field. The net work
around this path is zero.

Another implication is that we may define an electric potential energy. Recall that the work done by a conservative force
is also expressed as the difference in the potential energy corresponding to that force. Therefore, the work Wref to bring a

charge from a reference point to a point of interest may be written as

Wref = ∫
rref

r
F→ · d l→

and, by Equation 7.1, the difference in potential energy (U2 − U1) of the test charge Q between the two points is

ΔU = −∫
rref

r
F→ · d l→ .

Therefore, we can write a general expression for the potential energy of two point charges (in spherical coordinates):

ΔU = −⌠
⌡rref

r
kqQ
r2 dr = −⎡

⎣−kqQ
r

⎤
⎦rref

r
= kqQ⎡

⎣
1
r − 1

rref
⎤
⎦.

We may take the second term to be an arbitrary constant reference level, which serves as the zero reference:

U(r) = kqQ
r − Uref.

A convenient choice of reference that relies on our common sense is that when the two charges are infinitely far apart,
there is no interaction between them. (Recall the discussion of reference potential energy in Potential Energy and
Conservation of Energy (http://cnx.org/content/m58311/latest/) .) Taking the potential energy of this state to be
zero removes the term Uref from the equation (just like when we say the ground is zero potential energy in a gravitational

potential energy problem), and the potential energy of Q when it is separated from q by a distance r assumes the form

(7.2)U(r) = kqQ
r (zero reference at r = ∞).

This formula is symmetrical with respect to q and Q, so it is best described as the potential energy of the two-charge system.

Example 7.2

Potential Energy of a Charged Particle

A +3.0-nC charge Q is initially at rest a distance of 10 cm ( r1 ) from a +5.0-nC charge q fixed at the origin

(Figure 7.7). Naturally, the Coulomb force accelerates Q away from q, eventually reaching 15 cm ( r2 ).
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7.2

Figure 7.7 The charge Q is repelled by q, thus having work
done on it and losing potential energy.

What is the change in the potential energy of the two-charge system from r1 to r2?

Strategy

Calculate the potential energy with the definition given above: ΔU12 = −∫
r1

r2
F→ · d r→ . Since Q started from

rest, this is the same as the kinetic energy.

Solution

We have

ΔU12 = −∫
r1

r2
F→ · d r→ = −⌠

⌡r1

r2
kqQ
r2 dr = −⎡

⎣−kqQ
r

⎤
⎦r1

r2
= kqQ⎡

⎣
1
r2

− 1
r1

⎤
⎦

= ⎛
⎝8.99 × 109 Nm2 /C2⎞

⎠
⎛
⎝5.0 × 10−9 C⎞

⎠
⎛
⎝3.0 × 10−9 C⎞

⎠
⎡
⎣

1
0.15 m − 1

0.10 m
⎤
⎦

= −4.5 × 10−7 J.

Significance

The change in the potential energy is negative, as expected, and equal in magnitude to the change in kinetic energy
in this system. Recall from Example 7.1 that the change in kinetic energy was positive.

Check Your Understanding What is the potential energy of Q relative to the zero reference at infinity at
r2 in the above example?

Due to Coulomb’s law, the forces due to multiple charges on a test charge Q superimpose; they may be calculated
individually and then added. This implies that the work integrals and hence the resulting potential energies exhibit the same
behavior. To demonstrate this, we consider an example of assembling a system of four charges.

Example 7.3

Assembling Four Positive Charges

Find the amount of work an external agent must do in assembling four charges +2.0 µC,
+3.0 µC, + 4.0 µC, and +5.0 µC at the vertices of a square of side 1.0 cm, starting each charge from infinity

(Figure 7.8).
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Figure 7.8 How much work is needed to assemble this charge
configuration?

Strategy

We bring in the charges one at a time, giving them starting locations at infinity and calculating the work to bring
them in from infinity to their final location. We do this in order of increasing charge.

Solution

Step 1. First bring the +2.0-µC charge to the origin. Since there are no other charges at a finite distance from

this charge yet, no work is done in bringing it from infinity,

W1 = 0.

Step 2. While keeping the +2.0-µC charge fixed at the origin, bring the +3.0-µC charge to

(x, y, z) = (1.0 cm, 0, 0) (Figure 7.9). Now, the applied force must do work against the force exerted by the

+2.0-µC charge fixed at the origin. The work done equals the change in the potential energy of the +3.0-µC
charge:

W2 = kq1 q2
r12

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠

⎛
⎝2.0 × 10−6 C⎞

⎠
⎛
⎝3.0 × 10−6 C⎞

⎠

1.0 × 10−2 m
= 5.4 J.

Figure 7.9 Step 2. Work W2 to bring the +3.0-µC charge

from infinity.

Step 3. While keeping the charges of +2.0 µC and +3.0 µC fixed in their places, bring in the +4.0-µC charge

to (x, y, z) = (1.0 cm, 1.0 cm, 0) (Figure 7.10). The work done in this step is

W3 = kq1 q3
r13

+ kq2 q3
r23

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠
⎡

⎣
⎢

⎛
⎝2.0 × 10−6 C⎞

⎠
⎛
⎝4.0 × 10−6 C⎞

⎠

2 × 10−2 m
+

⎛
⎝3.0 × 10−6 C⎞

⎠
⎛
⎝4.0 × 10−6 C⎞

⎠

1.0 × 10−2 m

⎤

⎦
⎥ = 15.9 J.
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7.3

Figure 7.10 Step 3. The work W3 to bring the +4.0-µC
charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the +5.0-µC charge to

(x, y, z) = (0, 1.0 cm, 0) (Figure 7.11). The work done here is

W4 = kq4
⎡
⎣

q1
r14

+ q2
r24

+ q3
r34

⎤
⎦,

= ⎛
⎝9.0 × 109 N · m2

C2
⎞
⎠

⎛
⎝5.0 × 10−6 C⎞

⎠

⎡

⎣
⎢

⎛
⎝2.0 × 10−6 C⎞

⎠

1.0 × 10−2 m
+

⎛
⎝3.0 × 10−6 C⎞

⎠

2 × 10−2 m
+

⎛
⎝4.0 × 10−6 C⎞

⎠

1.0 × 10−2 m

⎤

⎦
⎥ = 36.5 J.

Figure 7.11 Step 4. The work W4 to bring the +5.0-µC
charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in
bringing each charge from infinity to its final position:

WT = W1 + W2 + W3 + W4 = 0 + 5.4 J + 15.9 J + 36.5 J = 57.8 J.

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated
interactions need to be considered; the work on the third charge only depends on its interaction with the first and
second charges, the interaction between the first and second charge does not affect the third.

Check Your Understanding Is the electrical potential energy of two point charges positive or negative if
the charges are of the same sign? Opposite signs? How does this relate to the work necessary to bring the
charges into proximity from infinity?

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and
negative if the two charges are of opposite types. This makes sense if you think of the change in the potential energy ΔU
as you bring the two charges closer or move them farther apart. Depending on the relative types of charges, you may have
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to work on the system or the system would do work on you, that is, your work is either positive or negative. If you have
to do positive work on the system (actually push the charges closer), then the energy of the system should increase. If you
bring two positive charges or two negative charges closer, you have to do positive work on the system, which raises their
potential energy. Since potential energy is proportional to 1/r, the potential energy goes up when r goes down between two
positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the
charges are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since
potential energy is negative in the case of a positive and a negative charge pair, the increase in 1/r makes the potential energy
more negative, which is the same as a reduction in potential energy.

The result from Example 7.1 may be extended to systems with any arbitrary number of charges. In this case, it is most
convenient to write the formula as

(7.3)
W12 ⋯ N = k

2∑
i

N
∑

j

N qi q j
ri j

for i ≠ j.

The factor of 1/2 accounts for adding each pair of charges twice.

7.2 | Electric Potential and Potential Difference

Learning Objectives

By the end of this section, you will be able to:

• Define electric potential, voltage, and potential difference

• Define the electron-volt

• Calculate electric potential and potential difference from potential energy and electric field

• Describe systems in which the electron-volt is a useful unit

• Apply conservation of energy to electric systems

Recall that earlier we defined electric field to be a quantity independent of the test charge in a given system, which would
nonetheless allow us to calculate the force that would result on an arbitrary test charge. (The default assumption in the
absence of other information is that the test charge is positive.) We briefly defined a field for gravity, but gravity is always
attractive, whereas the electric force can be either attractive or repulsive. Therefore, although potential energy is perfectly
adequate in a gravitational system, it is convenient to define a quantity that allows us to calculate the work on a charge

independent of the magnitude of the charge. Calculating the work directly may be difficult, since W = F→ · d→ and the

direction and magnitude of F→ can be complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But

we do know that because F→ = q E→ , the work, and hence ΔU, is proportional to the test charge q. To have a physical

quantity that is independent of test charge, we define electric potential V (or simply potential, since electric is understood)
to be the potential energy per unit charge:

Electric Potential

The electric potential energy per unit charge is

(7.4)V = U
q .

Since U is proportional to q, the dependence on q cancels. Thus, V does not depend on q. The change in potential energy
ΔU is crucial, so we are concerned with the difference in potential or potential difference ΔV between two points, where
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